Content

From DisplaysBook
Revision as of 14:46, 1 June 2016 by Dbwadmin (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search

Summary

In the last decade, new displays have been developed at an ever-increasing pace: bulky cathode ray tubes have been replaced by flat panels and mobile phones, tablets, and navigation systems have proliferated. Seeing this explosion raises tantalizing questions about the future evolution of visual displays:

  • Will interactive 3D experiences replace passive 2D ones?
  • Will pixels die out and be replaced by voxels or hogels?
  • Will printed displays be sold by the square yard and glued to the wall?
  • Will disposable displays, powered by printed batteries and with built-in storage chips, talk to us from cereal boxes?
  • Will chip implants directly interface to our brains, eliminating the need for any displays at all?

Displays: Fundamentals and Applications begins by presenting the basics of wave optics, geometric optics, light modulation, visual perception, and display measures, along with the principles of holography. It then describes the technology and techniques behind projection displays, projector-camera systems, stereoscopic and autostereoscopic displays, computer-generated holography, and near-eye displays. In addition, the authors discuss how real-time computer graphics and computer vision enable the visualization of graphical 2D and 3D content. The text is complemented by more than 400 rich illustrations, which give readers a clear understanding of existing and emerging display technology.

Table of Contents

Preface

1 Introduction
1.1 Displays: A Bird's-Eye View
1.2 Milestones of Display Technology
1.2.1 Early 1400s to Late 1800s: The Optical Era
1.2.2 Late 1800s to Early 1900s: The Electromechanical Era
1.2.3 Early and mid-1900s: The Electronic Era
1.2.4 Late 1900s to Early 2000s: The Digital Era
1.2.5 The Fascination of Three Dimensions
1.3 Organization of the Book
2 Fundamentals of Light
2.1 Introduction
2.2 Electromagnetic Radiation
2.3 Principles of Light Generation
2.3.1 Thermal Radiation
2.3.2 Applications of Thermal Radiation Laws
2.3.3 Open Systems and the Greenhouse Effect
2.3.4 Color Temperature
2.3.5 Bremsstrahlung
2.3.6 Photon Energies
2.3.7 Electron Excitation
2.3.8 Gas Discharge
2.3.9 Electroluminescence
2.4 Measuring Light
2.4.1 Radiometry
2.4.2 Photometry
2.5 Physics of Light
2.5.1 Interference
2.5.2 Quantum Effects
2.5.3 Fourier Spectrum
2.5.4 Radiation Processes Revisited
2.5.5 Tunneling
2.5.6 Quantum Dots
2.5.7 Polarization
2.5.8 Circular Polarization
2.6 Summary
3 Principles of Optics
3.1 Introduction
3.2 Wave Optics
3.3 Geometric Optics
3.3.1 Light Modulation
3.3.2 Homogeneous vs. Inhomogeneous Media
3.3.3 Snell’s Law Vectorized
3.4 Formation of Point Images
3.4.1 Reflective Optics
3.4.2 Refractive Optics
3.4.3 Properties of Optical Systems
3.5 Lasers
3.5.1 Stimulated Emission
3.5.2 Laser Beam Divergence
3.6 The Plenoptic Function
3.7 Summary
Basics of Visual Perception
4.1 Introduction
4.2 The Human Visual System
4.2.1 The Eye as an Optical System
4.2.2 Saccades
4.2.3 Temporal Response
4.2.4 Contrast and Dynamic Range
4.2.5 Resolution
4.3 Colorimetry
4.3.1 CIE Color-Matching Functions
4.3.2 The CIE Chromaticity Diagram
4.3.3 Color Separation of the Eye
4.3.4 Color Recording
4.3.5 Neuro-Physiological Results
4.4 Depth Perception
4.4.1 The Human Visual Field
4.4.2 Depth Cues
4.4.3 Stereo Picture Recording
4.5 Motion Pictures
4.5.1 Displays and Motion Blur
4.5.2 Film Projection
4.6 Summary
5 Holographic Principles
5.1 Introduction
5.2 Holography: A Summary
5.2.1 Holographic Object Recognition
5.2.2 A Basic Hologram Setup
5.3 Interference and Diffraction
5.3.1 The Grating Equation
5.3.2 Holographic Point Formation in Detail
5.3.3 Phase Holograms
5.3.4 Embossed Holograms
5.3.5 Color Dispersion
5.3.6 Volume Gratings
5.3.7 Hologram Efficiency
5.3.8 Holograms and Displays – Basic Considerations
5.3.9 Temporal Coherence
5.3.10 Spatial Coherence
5.3.11 Laser Speckle
5.4 Holographic Optical Elements (HOE)
5.4.1 Head-Up Displays
5.4.2 Construction of a HOE
5.4.3 HOE Angular and Frequency Response
5.4.4 HOEs vs. Conventional Optics
5.4.5 Camera Lenses with HOEs
5.4.6 Virtual HOEs
5.4.7 Spatial Light Modulators
5.4.8 Beam Splitters and Diverters
5.4.9 Holographic Projection Screens
5.4.10 Visual Perception of Holograms
5.4.11 Keyhole Holograms
5.5 Optical Holography
5.5.1 Optical Distortion
5.5.2 Transmission Holograms
5.5.3 Reflection Holograms
5.5.4 Rainbow Holograms
5.5.5 Color Holograms
5.5.6 Multichannel Holograms
5.5.7 Holographic Stereograms
5.5.8 Digital Volumetric Holograms
5.6 Summary
6 Display Basics
6.1 Introduction
6.2 Fundamental Measures
6.2.1 Resolution
6.2.2 Interlacing
6.2.3 TV Standards
6.2.4 Display Resolution and Motion
6.2.5 Brightness
6.2.6 Contrast and Dynamic Range
6.2.7 Gamma
6.2.8 Geometry
6.2.9 Angular Range
6.2.10 Speed
6.3 Color and Intensity Production
6.3.1 Color Gamut
6.3.2 Wide-Color-Gamut Displays
6.3.3 Multicolor Displays
6.3.4 Additive and Subtractive Color Mixing
6.3.5 YUV-Formats
6.3.6 Dyes and Filters
6.3.7 Light Sources
6.3.8 Luminescent vs. Light Valve Displays
6.3.9 Test Pictures
6.4 Signal and Image Processing
6.4.1 Signal Transmission
6.4.2 The Sampling Theorem
6.4.3 Tonal Resolution, Signal Noise, and Transfer Function
6.4.4 Antialiasing
6.4.5 Moire
6.4.6 Resizing
6.4.7 Noise Reduction
6.4.8 Image Compression
6.4.9 Deinterlacing
6.5 Electronics
6.5.1 Semiconductors
6.5.2 Passive Matrix Displays
6.5.3 Multiplexing and Connection
6.5.4 Active Matrix Displays
6.5.5 Smart Displays
6.6 Assembly
6.6.1 Panel Construction
6.6.2 Backlighting
6.6.3 Antireflective Coatings
6.6.4 Touch Screens
6.6.5 Flexible Electronics
6.6.6 Transparent Electronics
6.6.7 Printed Displays
6.7 Power Consumption
6.8 Summary
Spatial Light Modulation
7.1 Introduction
7.2 Transmissive Displays
7.2.1 LCD
7.2.2 FLC
7.2.3 TMOS
7.2.4 Dyed Guest Host Displays
7.2.5 Other
7.3 Reflective Displays
7.3.1 LCoS
7.3.2 Bi-Stable LC displays
7.3.3 DMD
7.3.4 Advanced Driving Techniques
7.3.5 PISTON-Type Micromirror Displays
7.3.6 MLM
7.3.7 GLV
7.3.8 Polymer Displays
7.3.9 E-Ink
7.3.10 Electrowetting Displays
7.3.11 Electrofluidic Displays
7.3.12 iMOD Displays
7.3.13 Refractive Index Modulation
7.3.14 Electronic Paper
7.4 Transflective Displays
7.5 Transparent Backlight Displays
7.6 Emissive Displays
7.6.1 CRT
7.6.2 FED and SED
7.6.3 Plasma Displays
7.6.4 Electroluminescence Displays
7.6.5 LED
7.6.6 OLED
7.6.7 Vacuum Fluorescence Displays
7.6.8 Cold Cathode Tubes
7.7 Tiled Displays
7.8 High Dynamic Range Displays
7.8.1 Rendering for HDR LCD Displays
7.9 Bidirectional Displays
7.10 Projection Displays
7.10.1 Projector Optics Overview
7.10.2 Projection Lenses
7.10.3 Projector Lamps
7.10.4 CRT and OLED Projectors
7.10.5 LCD Projectors
7.10.6 DLP and GLV Projectors
7.10.7 Eidophor Projector
7.10.8 Dichroic Combiners
7.10.9 Fourier Holographic Projector
7.10.10 Projection Screens
7.10.11 Rear Projection
7.10.12 Wedge Displays
7.10.13 Collimated Displays
7.10.14 Laser Projectors
7.10.15 Beam Deflection Modes
7.11 Summary
8 Projector-Camera Systems
8.1 Introduction
8.2 Challenges of Non-optimized Surfaces
8.3 Geometric Registration
8.3.1 Uniformly Colored Surfaces of Known Geometry
8.3.2 Textured Surfaces and Surfaces of Unknown Geometry
8.3.3 Embedded Structured Light
8.4 Radiometric Compensation
8.4.1 Static Techniques
8.4.2 Dynamic Surfaces and Configurations
8.4.3 Dynamic Image Adaptation
8.4.4 Enhancing Contrast
8.5 Correcting Complex Light Modulations
8.5.1 Interreflections
8.5.2 Specular Reflections
8.5.3 Radiometric Compensation through Inverse Light Transport
8.6 Overcoming Technical Limitations
8.6.1 Increasing Depth of Field
8.6.2 Super-Resolution
8.6.3 High Dynamic Range
8.6.4 High Speed
8.7 Summary
9 Three-Dimensional Displays
9.1 Introduction
9.2 Three-Dimensional Displays: Basic Considerations
9.2.1 Orientation
9.2.2 Distance and Depth
9.2.3 Perspective
9.2.4 3D: Screen Size Matters
9.2.5 Toward Light Field Displays
9.3 Spatial Stereoscopic Displays
9.3.1 Stereo-Channel Separation
9.3.2 Projection Screens 347
9.3.3 Screen Configurations and Rendering
9.3.4 Stereoscopic Multiviewer Techniques
9.4 Autostereoscopic Displays
9.4.1 Parallax Displays
9.4.2 Volumetric Displays
9.5 Light Field Displays
9.5.1 Parameterization
9.5.2 Light Fields vs. Holograms
9.5.3 Light Field Focus Synthesis
9.5.4 Depth of Field and Light Field Recording
9.5.5 Light Field Display Implementations
9.5.6 An Adaptive Approach to Light Field Displays
9.6 Computer-Generated Holograms
9.6.1 Displaying Computed Fringe Patterns
9.6.2 Computing a Hologram
9.6.3 Fourier Hologram Synthesis
9.6.4 Adaptive Holographic Displays
9.7 3D Media Encoding
9.7.1 Light Field Encoding
9.7.2 Camera Array (Multiview) Encoding
9.7.3 Holographic Millimeter-Wave Encoding
9.8 Summary
10 Near-Eye Displays
10.1 Introduction
10.2 Eye Physiology
10.3 Brightness and Power Consumption
10.4 Display Technologies for Near-Eye Displays
10.5 Examples of Near-Eye Displays
10.5.1 View-Covering Displays
10.5.2 Semicovering Displays
10.5.3 Optical See-Through Displays
10.5.4 Additional Components
10.6 Combiner Mirrors
10.6.1 Dichroic Combiners
10.6.2 Holographic Combiners
10.6.3 Diffractive Combiners
10.7 Optics Design
10.7.1 Self-Adaptation (Collimated Near-Eye Display)
10.7.2 Exit Pupil
10.7.3 Freeform Optics
10.7.4 Freeform Displays
10.7.5 A Straightforward Mirror Synthesis
10.8 On-Axis NED
10.9 Laser Displays
10.9.1 A Classical Laser Scanner Design
10.9.2 Laser Display with Curved Mirror
10.9.3 Exit Pupil with Laser Scanners
10.9.4 Multi Resolution Scanners
10.10 Smart Near-Eye Displays
10.10.1 Smart Displays for Fast Motion Response
10.10.2 Multi Resolution Smart Displays
10.11 Focus and Accommodation
10.11.1 Ghost Objects
10.12 Light Field NED
10.12.1 Parallax Barrier NED
10.12.2 Bragg Mirror Array NED
10.12.3 The Pinlight Display
10.13 Holographic Image Generation for NED
10.13.1 Holographic Scanners
10.13.2 Holographic Near-Eye Displays
10.14 Advanced HOE Designs
10.14.1 Wave Guides
10.14.2 The Quantum Display
10.14.3 A Multiple Depth Plane Display
10.15 Contact Lens Displays
10.15.1 Contact Lens Supported Displays
10.16 Adaptive Displays and Eye Tracking
10.16.1 Adaptation Requirements
10.16.2 Eye Tracking
10.16.3 Retina Tracking
10.16.4 Dynamic Image Linearization
10.16.5 Micromotors
10.17 Image Integration
10.17.1 Optical Compensation
10.17.2 Eyetaps and Video-See-Through
10.17.3 Mask Displays
10.18 Summary
11 Discussion and Outlook
11.1 Introduction
11.2 Next Steps in Display Technology
11.3 A Short Reflection on Displays
11.4 Brain-Computer Interfaces -- The Ultimate Solution?
11.4.1 Retinal Implants
11.4.2 Neural Implants
11.4.3 Nanobots
11.5 Conclusion
Appendix (2nd edition) - Perceptual Display Calibration (by Rafa l K. Mantiuk)
1 Display Models
1.1 Gamma and sRGB
1.2 Color transformation
1.3 Gamma-offset-gain model
1.4 Other display models
2 Visual Display Calibration
2.1 Gamma calibration
2.2 Color calibration
3 Contrast Sensitivity
3.1 Contrast constancy
3.2 Thresholds across the luminance range
4 Quantization and Bit-Depth
4.1 Quantization errors
4.2 Perceptual transfer functions
5 Summary
Appendix (1st edition) - Image Processing for Displays (by Anselm Grundhöfer)
A. The Fixed-Function Graphics Pipeline
B. The Programmable Graphics Pipeline
C. Graphics Hardware
D. GPU Programming Languages
E. An Introduction to GPU Programming by Example
F. The Swiss Army Knife of GPU Image Processing
Bibliography
Index


Personal tools