From DisplaysBook
(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
= Displays: Fundamentals and Applications=
= Displays: Fundamentals and Applications =

Revision as of 06:00, 19 May 2011


Displays: Fundamentals and Applications


Rolf R. Hainich, Hainich&Partners, Author of The End of Hardware, Booksurge LCC, 2006, 2009
Oliver Bimber, Johannes Kepler University Linz, Author of Spatial Augmented Reality (free download), A K Peters, 2005


A K Peters LDT / CRC Press
Release at Siggraph 2011 in Vancouver, CA

About the Book

Since its invention in the late twenties, television has radically shaped the 20th century. Today, most of our visual entertainment and daily technological tasks are viewed on new and innovative displays. Bulky cathode-ray tubes, for instance, have almost completely disappeared from our desks and have been widely replaced by flat panels. The form-factor and style of home-entertainment displays is evolving from small cubes to large planes. The maximum size of flat-panel devices is constrained by technological and applicability issues. If limits of size are reached, advanced video projectors may be an option in order to continue this trend.
Small displays are continuously carried around by most of us, as in the form of mobile phones, personal digital assistants, navigation systems, or laptops. What will come next? What will TVs be like in another 30 years? Will pixels be passed over in favor of voxels or hogels? Will interactive three-dimensional experiences rule out passive two-dimensional ones? Will printed displays be sold by the square yard and be glued to the wall? Will disposable displays with built-in storage chips talk to us from the corn flakes box, powered by printed batteries? Or will we all be wearing display glasses, simulating for us any kind and any number of virtual displays we ever need? Or will we all wear chip implants that directly interface to our brains, eliminating any need for displays at all? These and other questions are of particular interest -- especially considering that many of us will likely witness this evolution.
Display technology will certainly be going through many interesting changes, and perhaps some unexpected revolutions as well. Currently, new displays are being developed at an ever-increasing pace. In the end, price and usability will determine which of these numerous developments will prevail. Concurrently, new possibilities such as flexible displays and electronic paper, display glasses and pocket-sized projectors, will change usage habits and lead to new and entirely unexpected applications. These complex interdependencies make the future of display technology quite unpredictable.
The purpose of our work is to address many of the recent and current developments, and to offer technical insights into the present and the foreseeable future of display technologies and techniques. In spite of the overwhelming complexity of the field, the following pages will provide information so that interested students and professionals may make qualified evaluations of existing and soon-to-appear displays. We also present some innovative ideas of our own that we hope will stimulate further research and development.

Who should read this Book

This self-contained book is written for students and professionals in computer science, engineering, media, and arts who have an interest in present and future graphical displays. With more than 400 illustrations, it explains fundamentals that help to understand how particular types of displays work on a level that does not require a PhD in optics.
In particular, this book will discuss the following constructive topics: basics of wave optics and geometric optics, fundamentals of light modulation, principles of holography, visual perception and display measures, basic display technologies, projection displays, projector-camera systems and techniques (including calibration and image correction), essence of stereoscopic and auto-stereoscopic displays (including parallax displays, light-field displays and volumetric displays), functioning of computer-generated holography, near-eye displays, real-time computer graphics and computer vision aspects that enable the visualization of graphical 2D and 3D content with such displays, as well as applications.
Supplementary material (including all images used in this book) can be found on this web-site.


We are grateful to our reviewers who provided us with valuable feedback and discussions (in alphabetical order):

  • Mark Billinghurst, Human Interface Technology Laboratory New Zealand (HIT Lab NZ), Christchurch, NZ
  • Nelson Chang, Hewlett-Packard Laboratories, Palo Alto, USA
  • Neil Dodgson, Computer Laboratory, Cambridge University, UK
  • Tim Frieb, Laservision, Germany
  • Wolfgang Heidrich, Department of Computer Science, University of British Columbia, CA
  • Hong Hua, College of Optical Sciences, University of Arizona, USA
  • Daisuke Iwai, Graduate School of Engineering Science, Osaka University, JP
  • Kiyoshi Kiyokawa, Cybermedia Center, Osaka University, JP
  • Aditi Majumder, Department of Computer Science, University of California Irvine, USA
  • Kari Pulli, Visual Computing and Ubiquitous Imaging, Nokia
  • Jannick Rolland, Institute of Optics, University of Rochester, USA
  • Hideo Saito, Department of Information and Computer Science, Keio University, Japan
  • Andrei State, Department of Computer Science, University of North Carolina at Chapel Hill, USA

They and our copyeditors, Eileen Worthley, Alice Peters, and Sarah Cutler, helped to put the finishing touches on this book.

We are grateful to Henry Fuchs (University of North Carolina at Chapel Hill) for writing the book's foreword (Foreword by Henry Fuchs).

Chapter 8 (Projector-Camera Systems) is largely based on a previous state-of-the- art report, published at EUROGRAPHICS (with friendly permission of the EUROGRAPHICS association). We thank the original co-authors Daisuke Iwai (Osaka University), Gordon Wetzstein (University of Bristish Columbia) and Anselm Grundhöfer (Bauhaus-University Weimar, Disney Research, ETH Zürich). We thank Anselm Grundhöfer for providing the appendix, Image Processing for Displays.

We also want to thank all colleagues, companies and institutions who provided additional image material (in alphabetical order):

Arrington Research, Mark Ashdown, Edwin P. Berlin (LightSail Energy), Fred Brooks (Univ. of N.C. at Chapel Hill), BAE Systens, Burton Inc., CAE Elektronik GmbH, Nelson Chang (Hewlett-Packard Laboratories), Paul Debevec (University of Southern California), Elizabeth Downing (3DTL Inc.), Gregg Favalora, FogScreen Inc., FhG-IPMS (Fraunhofer Institute for Photonic Micro-systems), Markus Gross (Computer Graphics Laboratory, ETH Zurich), Wolfgang Heidrich (University of Bristish Columbia), HOLOEYE Photonics AG, Infitec GmbH, IMI Intelligent Medical Implants GmbH, i-O Display Systems. Kent Displays, Inc., Masahiko Kitamura (NTT Network Innovation Labs), Yoshifumi Kitamura (Tohoku University), Kiyoshi Kiyokawa (Osaka University), Sebastian Knorr (Technical University of Berlin), Franz Kreupl (Sandisk, citations from work at Infineon), Yuichi Kusakabe (NHK Science and Technical Research Laboratories), Knut Langhans (Gymnasium Staade), Leibniz-Rechenzentrum (Technical University Munich), LG Philips LCD, Light Blue Optics, LightSpace Technologies, Inc., Lumus Inc., Max Planck Institute of Biochemistry, Microvision Inc., Shree Nayar (Columbia University), New Scale Technologies, Richard A. Normann (University of Utah), NTERA, NVIS Inc., Hanhoon Park (NHK Science and Technology Research Laboratories Tokyo), Pixel Qi Corp., PolyIC, RAFI GmbH, Imso Rakkolainen (Tampere University of Technology), Retina Implant AG, Sax3d GmbH, Hideo Saito (Keio University), John Rogers (University of Illinois), SeeReal Technologies GmbH, Stefan Seipel (Uppsala University), Alfred Stett (NMI, Universität Tübingen), Dennis J. Solomon (Holoverse, Inc.), U.S. Air Force 403rd Wing, VIOSO GmbH, WRSYSTEMS, Vusix Corporation, Walter Wrobel (Universitäts-Augenklinik Tübingen), Tomohiro Yendo (Nagoya University), Chongwu Zhou (University of Southern California), Young Optics, Eberhart Zrenner (Center for Ophthalmology, University of Tübingen).

Personal tools